Large-scale optimization with the primal-dual column generation method

نویسندگان

  • Jacek Gondzio
  • Pablo González-Brevis
  • Pedro Munari
چکیده

The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. A reduction in the number of calls to the oracle and in the CPU times are typically observed when compared to the standard column generation, which relies on extreme optimal dual solutions. In this paper, we investigate the behaviour of the PDCGM when solving largescale convex optimization problems. We have selected applications that arise in important real-life contexts such as data analysis (multiple kernel learning problem), decision-making under uncertainty (two-stage stochastic programming problems) and telecommunication and transportation networks (multicommodity network flow problem). In the numerical experiments, we use publicly available benchmark instances to compare the performance of the PDCGM against state-of-the-art methods. The results suggest that the PDCGM offers an attractive alternative over specialized methods since it remains competitive in terms of number of iterations and CPU times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior Point Methods for Large-Scale Linear Programming

We discuss interior point methods for large-scale linear programming, with an emphasis on methods that are useful for problems arising in telecommunications. We give the basic framework of a primal-dual interior point method, and consider the numerical issues involved in calculating the search direction in each iteration, including the use of factorization methods and/or preconditioned conjugat...

متن کامل

A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems

In recent years the expansion of energy supplies from volatile renewable sources has triggered an increased interest in stochastic optimization models for hydro-thermal unit commitment. Several studies have modelled this as a two-stage or multi-stage stochastic mixed-integer optimization problem. Solving such problems directly is computationally intractable for large instances, and alternative ...

متن کامل

A new warmstarting strategy for the primal-dual column generation method

This paper presents a new warmstarting technique in the context of a primal-dual column generation method applied to solve a particular class of combinatorial optimization problems. The technique relies on calculating an initial point and on solving auxiliary linear optimization problems to determine the step direction needed to fully restore primal and dual feasibilities after new columns arri...

متن کامل

New developments in the primal-dual column generation technique

The classical column generation is based on optimal solutions of the restricted master problems. This strategy frequently results in an unstable behaviour and may require an unnecessarily large number of iterations. To overcome this weakness, variations of the classical approach use interior points of the dual feasible set, instead of optimal solutions. In this paper, we address the primal-dual...

متن کامل

Bundle Relaxation and Primal Recovery in Unit Commitment Problems. The Brazilian Case

We consider the inclusion of commitment of thermal generation units in the optimal management of the Brazilian power system. By means of Lagrangian relaxation we decompose the problem and obtain a nondifferentiable dual function that is separable. We solve the dual problem with a bundle method. Our purpose is twofold: first, bundle methods are the methods of choice in nonsmooth optimization whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016